JMB TRANSPORTATION ENGINEERING, INC.

TRAFFIC/TRANSPORTATION ENGINEERING & PLANNING SERVICES

TRAFFIC IMPACT STATEMENT

For

Christ the King Presbyterian Church

(Santa Barbra Boulevard, Collier County, Florida)

August 7, 2018 Revised October 5, 2018

<u>County TIS Review Fees</u> TIS Methodology Review Fee = \$500.00 TIS (Small-Scale Study) Review Fee =\$0.00

Prepared by:

JMB TRANSPORTATION ENGINEERING, INC.

4711 7TH AVENUE SW NAPLES, FLORIDA 34119

CERTIFICATE OF AUTHORIZATION No. 27830

(PROJECT No. 180713)

NO 43860

STATE OF DESTRUCTION AND ASSESSED TO STATE OF DESTRUCTION AND ASSESSED TO STATE OF DESTRUCTION ASSESSED.

TABLE OF CONTENTS

Conclusions	2
Methodology	2
Scope of Project	2
Table A - Existing & Proposed Development	2
Figure 1 - Project Location & E+C Road Classification	2.1
Master Concept Plan	2.2
Project Generated Traffic	3
Table B - Net New Trips Generated	3
Table 1 - Trip Generation Computations	3.1
Existing + Committed Road Network	4
Project Traffic Distribution	4
Area of Significant Impact	4
Figure 2 - Project Traffic Distribution	4.1
Table 2A - Area of Impact/Road Classification	4.2
Site Access Conditions	5
Table C - Build-out Traffic vs. Intersection Improvements	5
HCS Intersection Analysis	5.1
2017 thru 2020 Project Build-out Traffic Conditions	6
Table 2B - 2017 & 2020 Link Volumes	6.1
Table 2C - 2020 Link Volumes/Capacity Analysis	6.2

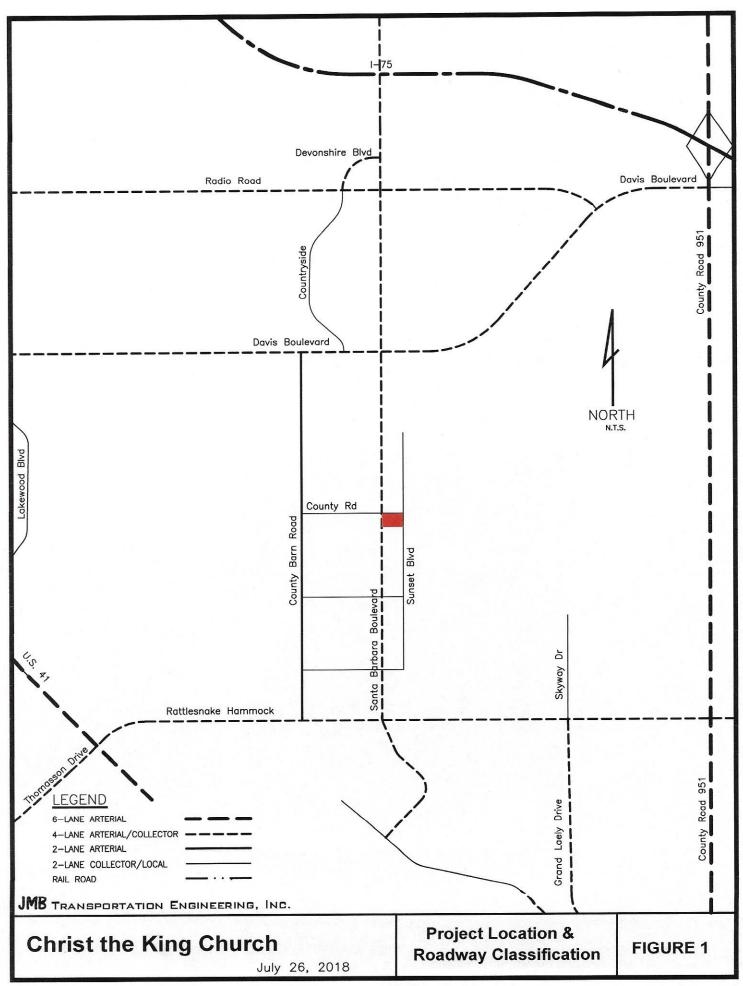
Conclusions

Based upon the findings of this report, it was determined that the proposed Christ the King Orthodox Presbyterian Church will not have a significant or negative impact upon the surrounding road network. It was verified that all roadways, within the project's area of influence, currently have a surplus of capacity and can accommodate the traffic associated with the proposed worship hall. As determined, the road network will continue to operate at acceptable levels of service for the foreseeable future and the project will not create any off-site transportation deficiencies that need to be mitigated.

Site Access

The project proposes to construct one (1) means of ingress/egress on Crews County Road and an "emergency only" access on Sunset Boulevard. Crews Road provides access to Santa Barbara Boulevard via a right-in/out and directional left-in median opening. A right ingress turn lane and left ingress turn lane were previously constructed at the existing median opening and the report concludes that those turn lanes are adequate in length to accommodate the traffic generated by Christ the King Orthodox Presbyterian Church.

Methodology


On July 26, 2018, a Traffic Impact Statement (TIS) Methodology Report was submitted to the office of Collier County Transportation Planning Department. The \$500.00 methodology meeting fee will be paid at the time of submitting the zoning application. A copy of the methodology, which is pending approval, has been provided in the appendix (refer to pages M1 thru M11). Note, at the time of the methodology review the proposed number o seats was 450, but subsequently was reduced to 400 seats.

Scope of Project

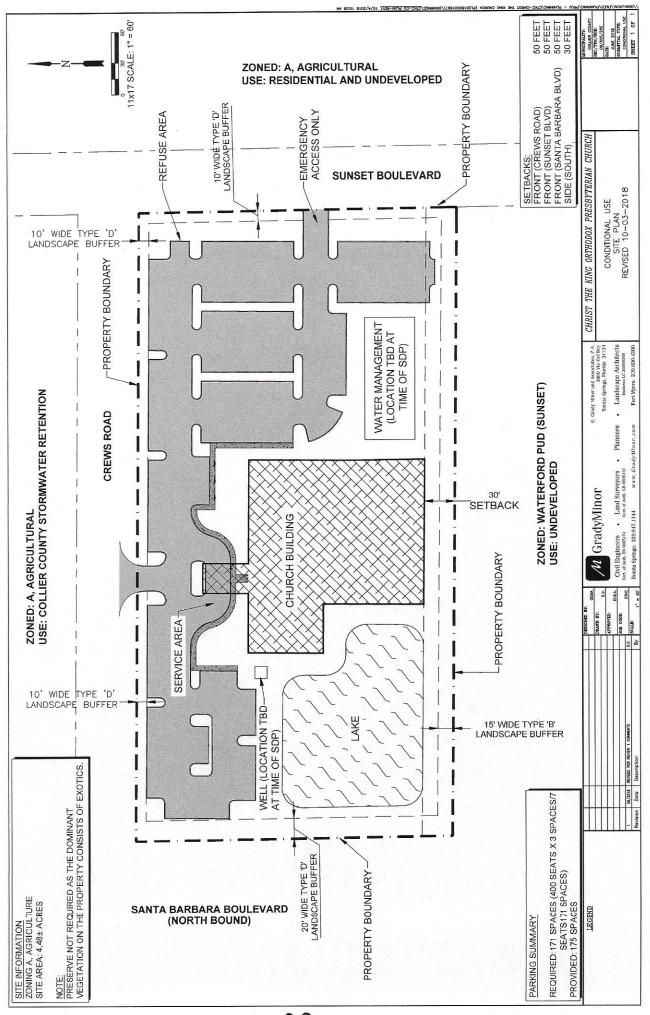

Christ the King Orthodox Presbyterian Church is a proposed worship hall that will consist of 21,000 square feet of structures and 400 seats. *Note, at the time of the methodology review the proposed number o seats was 450, but subsequently was reduced to 400 seats.* The site is located on the southeast corner of County Road and Santa Barbara Boulevard and approximately one (1) mile south of Davis Boulevard, within Collier County. It is expected that the project will be completed by the year 2020.

Table A
Proposed Land Use

Proposed Land Use	Size
Worship Hall/Church	21,000 s.f. 400 seats

2.1

Project Generated Traffic

Traffic that can be expected to be generated by the proposed church was estimated based upon the guidelines established by the Institute of Transportation Engineers, Trip Generation Manual, 10th Edition. That is, historical traffic data collected at similar land uses was relied upon in estimating the project's traffic. It was concluded that land use code "Church" (LUC 560) was most appropriate in estimating the new trips.

Table 1 depicts the computations performed in determining the total new trips. Table B provides a summary of the trip generation computation results that are shown in Table 1.

Table B Site-Generated Trips(Summation of Table 1)

Daily Weekday Trips Generated (ADT)	AM Peak Hour Trips Generated (vph)	PM Peak Hour Trips Generated (vph)
176	4	12

The report concludes that the project will generate less than 50 net new trip ends during the weekday highest peak hour. As such, the report investigates the traffic impacts associated with the project based upon the criteria set forth by the Collier County Government's Traffic Impact Statement Guidelines for developments generating "less than 50 trips", which is defined as a small-scale study.

TABLE 1 TRIP GENERATION COMPUTATIONS Christ the King Chruch

Code 560 560 560 560	Land Use Description Church Church Church Church Church	Bui (Weekday) (Weekday) (Sunday) (Sunday)	ild Schedule 21,000 s.f. 400 Seats 400 Seats 21,000 s.f.		
Land Use		Trip Generation Equation		/	
<u>Code</u>	Trip Period	(Based upon S.F.)	<u>Total Trips</u>	Trips Enter/	Exit
LUC 560	(Weekday) Daily Traffic (ADT) =	T=6.14(X) + 17.09=	146 ADT		
	AM Peak Hour (vph) =	T= 0.36(X) - 0.74 = 60% Enter/ 40% Exit =	7 vph	4 / 3	vph
	PM Peak Hour (vph) =	T= 0.37(X) + 3.90 = 45% Enter/ 55% Exit =	12 vph		vph
******	*********	**********	********		
LUC 560	(Weekday)	(Based upon Seats)			
	Daily Traffic (ADT) =	T=0.44(X)=	176 ADT		
	AM Peak Hour (vph) =	T= 0.01(X) = 50% Enter/ 50% Exit =	4 ADT	2 / 2	vph
	PM Peak Hour (vph) =	T= 0.03(X) = 40% Enter/ 60% Exit =	12 ADT		vph
******	**********		********		
LUC 560	(Sunday)	(Based upon Seats)			
	Daily Traffic (ADT) =	T= 1.21(X) =	484 ADT		
	Peak Hour (vph) =	T= 0.63(X) - 76.74 = 49% Enter/ 51% Exit =	175 vph	86 / 89	vph
******	**********		*******		
LUC 560	(Sunday)	(Based upon S.F.)			
	Daily Traffic (ADT) =	T= 27.63(X) =	580 ADT		
	Peak Hour (vph) =	T= 8.18(X) + 63.81 = 48% Enter/ 52% Exit =	236 vph	113 / 123	vph

TABLE 2A PROJECT'S AREA OF IMPACT

Project Traffic Peak Direction (vphpd) = Project Traffic Non-Peak Direction (vph) =

7 Exiting 5 Entering

Project Project Project	I. Volume Traffic PK Dir Pk Hr Non-PK Dir Non-Pk Impact Percent	Class LOS (vphpd) % Dist. (vphpd) Pk Dir (vph) DiR Standard Impact 4D D 2200 20.0% 1 N 1 E 2% 0.06%	6D D 2900 15.0% 1 E 1 W 2% 0.04%	6U D 2900 15.0% 1 E 1 W 3% 0.04%	4D D 1900 20.0% 1 w 1	6D D 2900 15.0% 1 E 1 W 2% 0.04%	6D E 3100 30.0% 2 N 2 S 2% 0.07%	65.0% 5 N 3 S 2% 0.15%	
	٠.			D 290	D 190	D 290			T
		Class 4D	<u>е</u>	9	40	Q9	Θ D	<u>е</u> р	נ
		County Barn to Santa Barbara	Santa Barbara to Radio Rd	Radio Rd to C.R 951	County Barn to Santa Barbara	Santa Barbara to C.R. 951	Radio Rd to Davis Blvd	Davis Blvd to Site	
		Davis Roulevard			74.0 Rattlesnake Ham.		Santa Barbara Blvd		
		15.0	16.1	16.2	74.0	75.0	78.0	79.1	0

2017 thru 2020 Project Build-out Traffic Conditions

In order to establish 2017 thru 2020 project build-out traffic conditions, two forecasting methods were used.

The first traffic forecasting method was the County's traffic count data was adjusted for peak season conditions, peak hour conditions, peak direction, and an annual growth rate was then applied. The peak season/peak hour/peak direction and annual growth rates were derived from the 2017 Collier County AUIR Report. Using the annual growth rate, the 2020 background traffic conditions were determined, which are depicted in Table 2B.

The second traffic forecasting method was to add the vested trips (trip bank) identified in the 2017 AUIR report to the adjusted peak season, peak hour and peak direction traffic counts. The vested trips "+" 2020 background traffic volumes are depicted in Table 2B.

The greater of the two values produced by the two forecasting procedures was then considered to reflect the 2020 background traffic. The net new project generated traffic was then added to the background traffic. Table 2C provides a summary of the 2017 thru 2020 traffic conditions and the roadways' level of service and remaining available capacity. As shown, all project impacted roadways will continue to operate at the County's adopted minimum level of service thresholds at project build-out.

TABLE 2B 2017 & 2020 ROADWAY LINK VOLUMES

Per Vested Trips Metho	2020	Peak Hour	PK Direction	Background	Per Vested Trips	(pdyda)	1584	863	740	661	1563	1002	1002	
				Trip	Bank	(pdydx)	144	163	40	171	213	112	112	
	Per Growth Rate Method	2020	Peak Hour	PK Direction	Background	(pdyda)	1528	743	743	520	1518	1001	1001	
			Growth	Rate	per	AUIR	2.00%	2.00%	2.00%	2.00%	3.98%	4.00%	4.00%	
				AUIR	¥	DiR	Ш	ш	8	3	z	S	S	
			2017	AUIR	Traffic	(pdyda)	1440	200	700	490	1350	890	890	
							County Barn to Santa Barbara	Santa Barbara to Radio Rd	County Barn to Santa Barbara	Santa Barbara to C.R. 951	Radio Rd to Davis Blvd	Davis Blvd to Site	Site to Rattlesnake Hammock	
							15.0 Davis Boulevard	16.1	74.0 Rattlesnake Ham.	75.0	78.0 Santa Barbara Blvd	79.1	79.2	
							~	_	7	1	7	~	1	

TABLE 2C 2020 ROADWAY LINK VOLUME/CAPACITY ANALYSIS

2020 2020	uild-Out Build-Out	eak Hour Peak Hour	Direction PK Direction	/c Ratio LOS	0.72 C	0.30 B	0.39 B		0.50 B	0.32 B	
									3100		
2020	Build-Out	Peak Hour	PK Dir	(pdyda)	1585	864	744	662	1565	1005	1004
		Prjct	Non-Pk	Dir	ш	≥	Ш	≥	S	S	z
	Project	Pk H	Non-PK Dir	(vph)	-	_	-	-	7	က	2
		Prjct	ᇫ	Dir	>	ш	≯	ш	z	z	S
	Project	Pk Hr	PK Dir	(pdyda)	-	-	-	-	2	2	2
2020	Peak Hour	PK Direction	Background	FOS	O	В	m	Δ	Ф	В	В
		Bkgd	품	힏	ш	ш	≥	≥	z	S	S
2020	Peak Hour	PK Direction	Background	(pdyda)	1584	863	743	661	1563	1002	1002
				FOS	ပ	В	8	Δ	В	ш	00
	2017	Peak Hour	PK Direction	(pdyda)	1440	700	700	490	1350	890	890
					County Barn to Santa Barbara	Santa Barbara to Radio Rd	County Barn to Santa Barbara	Santa Barbara to C.R. 951	Santa Barbara Blvd Radio Rd to Davis Blvd	Davis Blvd to Site	Site to Rattlesnake Hammock
					Davis Boulevard		74.0 Rattlesnake Ham.		Santa Barbara Blvd		
					15.0	16.1	74.0	75.0	78.0	79.1	79.2

JMB TRANSPORTATION ENGINEERING, INC.

TRAFFIC/TRANSPORTATION ENGINEERING & PLANNING SERVICES

TRAFFIC IMPACT STATEMENT **METHODOLOGY REPORT**

For

Christ the King Presbyterian Church

(Santa Barbra Boulevard, Collier County, Florida)

July 26, 2018

County TIS Review Fees TIS Methodology Review Fee = \$500.00 TIS (Small-Scale Study) Review Fee =\$0.00

Prepared by:

JMB TRANSPORTATION ENGINEERING, INC. 4711 7TH AVENUE SW NAPLES, FLORIDA 34119

CERTIFICATE OF AUTHORIZATION No. 27830

(PROJECT No. 180713)

BANKS, P.E REG. NO. 43860

APPENDIX A

INITIAL MEETING CHECKLIST

Suggestion: Use this Appendix as a worksheet to ensure that no important elements are overlooked. Cross out the items that do not apply.

Date: 7-26-2018	Time:

Location: Collier County Government Offices (North Horseshoe Drive)

People Attending:

Name, Organization, and Telephone Numbers

- 1) James M. Banks, JMB Transportation Engineering, Inc., 239-919-2767
- 2) Michael Sawyer, Collier County Government
- 3)
- 4)

Study Preparer:

Preparer's Name and Title: James M, Banks, P.E., President

Organization: JMB Transportation Engineering, Inc.

Address & Telephone Number: 4711 7th Avenue SW Naples, Florida 34119 (239)-919-

2767

Reviewer(s):

Reviewer's Name & Title: Michael Sawyer
Collier County Transportation Division

Applicant:

Applicant's Name:

Address:

Telephone Number:

Proposed Development:

Name: Christ the King Orthodox Presbyterian Church

Location: Southeast corner of County Road and Santa Barbara Blvd

Land Use Type: Church (450 seats)

ITE Code #: LUC 560

Proposed number of development units: 18,000 s.f. of structures and 450 seats

Other:

Description:

Zoning:

Existing: Vacant

Comprehensive plan recommendation:

Requested:

Findings of the Preliminary Study: See the attached

Study Type:

Small-Scale TIS

Study Area:

Boundaries: Based upon the County's 2%, 2% & 3% impact rule. See attached

Additional intersections to be analyzed: None

Horizon Year(s): 2020

Analysis Time Period(s): PM Peak

Future Off-Site Developments: None

Source of Trip Generation Rates: <u>ITE Trip Generation Manual</u>, 10th Edition (Table 1)

Reductions in Trip Generation Rates:

Pass-by trips:

Internal trips (PUD):

Transmit use:

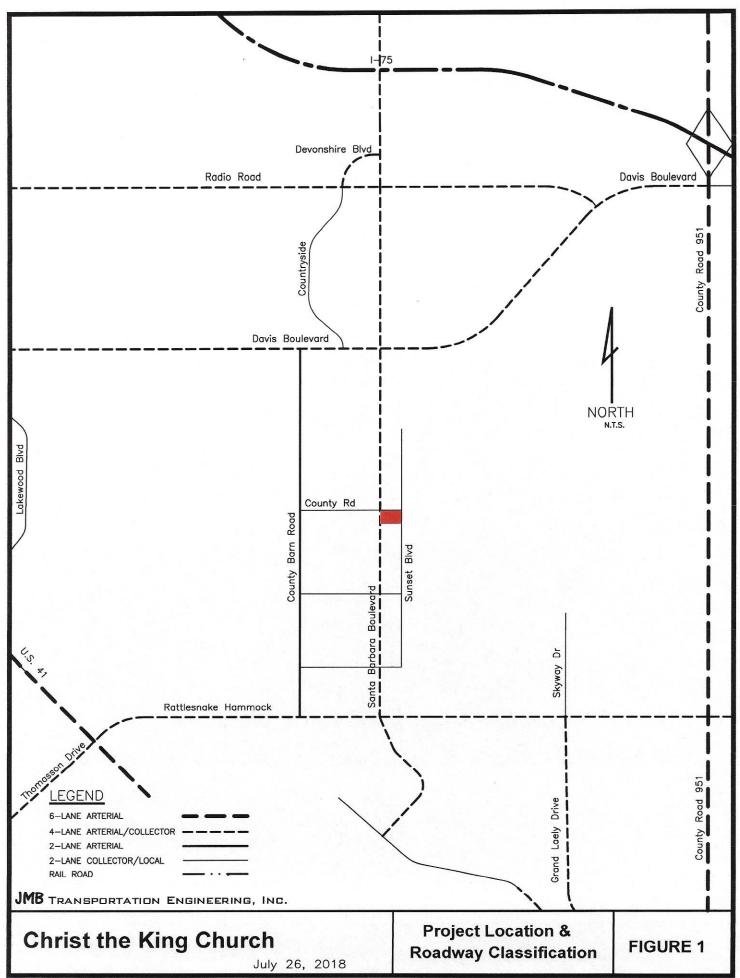
Other:

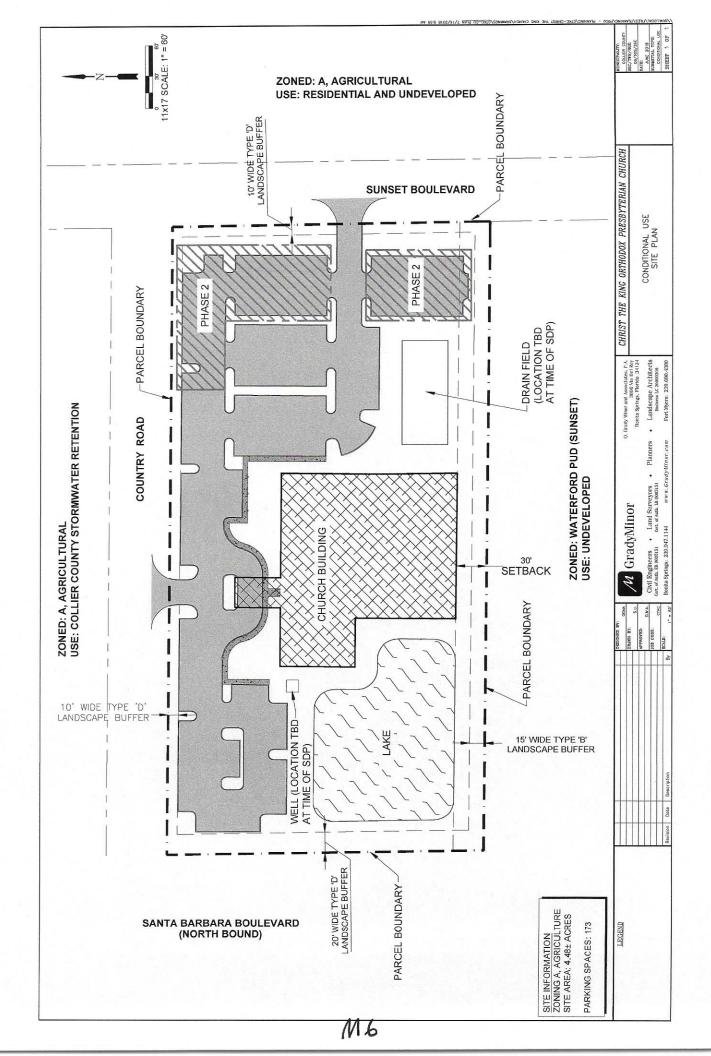
<u>Horizon Year Roadway Network Improvements:</u> 2022 per Collier County's 5-year CIE.

Methodology & Assumptions:

Non-site traffic estimates: See Attached

Site-trip generation: See Table 1


Trip distribution method: Based upon manual assignment (See Table 2A & Figure 2A)


Traffic assignment method:

Traffic growth rate: Per Collier County Historical & Current AUIR Reports, but not less

than 2% or background or vested trips method, whichever is greater.

Special Features: (from preliminary study or prior experience)
Accidents locations:
Sight distance:
Queuing:
Access location & configuration:
Traffic control:
Signal system location & progression needs:
On-site parking needs:
Data Sources:
Base maps:
Prior study reports:
Access policy and jurisdiction:
Review process:
Requirements:
Miscellaneous:
Small Scale Study – No Fee X
Minor Study - \$750.00
Major Study - \$1500.00
Includes 2 intersections
Additional Intersections - \$500.00 each <u>None</u>
All fees will be agreed to during the Methodology meeting and must be paid to Transportation prior to our sign-off on the application.
\bigcap 1
SIGNATURES //
Study Preparer
Reviewers
ICO ICWCIS
Applicant

TABLE 1 TRIP GENERATION COMPUTATIONS Christ the King Chruch

Land Use Description	ild Schedule	<u>ule</u>							
Church	(Sunday)								
Church	(Weekday)	18,000 s.f.							
Trip Period	Trip Generation Equation	<u>Tot</u>	tal Trips	Trips Ent	er/Exit				
(Sunday)		(Su	nday)						
Daily Traffic (ADT) =	T= 1.85(X) =		833 ADT						
Peak Hour (vph) =	T=0.61(X)=		275 vph	138 / 1	.37 vph				
	50% Enter/ 50% Exit =								
(Weekday)		(W	eekday)						
Daily Traffic (ADT) =	T=9.11(X) =		164 ADT						
AM Peak Hour (vph) =	T= 0.56(X) =		10 vph	6 /	4 vph				
	62% Enter/ 38% Exit =								
PM Peak Hour (vph) =	T=0.34(X)+5.24=		11 vph	5 /	6 vph				
	48% Enter/ 52% Exit =								
	Church Church Trip Period (Sunday) Daily Traffic (ADT) = Peak Hour (vph) = (Weekday) Daily Traffic (ADT) = AM Peak Hour (vph) =	Church (Sunday) Church (Weekday) Trip Period (Sunday) Daily Traffic (ADT) = T= 1.85(X) = T= 0.61(X) = 50% Enter/ 50% Exit = (Weekday) Daily Traffic (ADT) = T=9.11(X) = AM Peak Hour (vph) = T= 0.56(X) = 62% Enter/ 38% Exit = PM Peak Hour (vph) = T= 0.34(X) + 5.24 =	Church (Sunday) 450 Seats Church (Weekday) 18,000 s.f. Trip Period (Sunday) Trip Generation Equation (Sunday) Total (Sunday) Daily Traffic (ADT) = T= 1.85(X) = T= 0.61(X) = Peak Hour (vph) = T= 9.11(X) = (Weekday) Daily Traffic (ADT) = T= 9.11(X) = (Weekday) AM Peak Hour (vph) = T= 0.56(X) = 62% Enter/ 38% Exit = PM Peak Hour (vph) = T= 0.34(X) + 5.24 =	Church (Sunday) 450 Seats Church (Weekday) 18,000 s.f. Trip Period (Sunday) Trip Generation Equation (Sunday) Total Trips (Sunday) Daily Traffic (ADT) = T = 1.85(X) = 833 ADT Peak Hour (vph) = T = 0.61(X) = 275 vph 50% Enter/ 50% Exit = (Weekday) Daily Traffic (ADT) = T = 9.11(X) = 164 ADT AM Peak Hour (vph) = T = 0.56(X) = 10 vph 62% Enter/ 38% Exit = 11 vph	Church Church (Sunday) 450 Seats 18,000 s.f. Trip Period (Sunday) Trip Generation Equation (Sunday) Total Trips (Sunday) Daily Traffic (ADT) = Peak Hour (vph) = T= 1.85(X) = 833 ADT 275 vph 138 / 12 (Weekday) T= 0.61(X) = 275 vph 138 / 12 50% Enter/ 50% Exit = (Weekday) Daily Traffic (ADT) = T=9.11(X) = AM Peak Hour (vph) = T= 0.56(X) = 62% Enter/ 38% Exit = 70.34(X) + 5.24 = 11 vph 5 / 70.00 Cm 20.00 Cm 20				

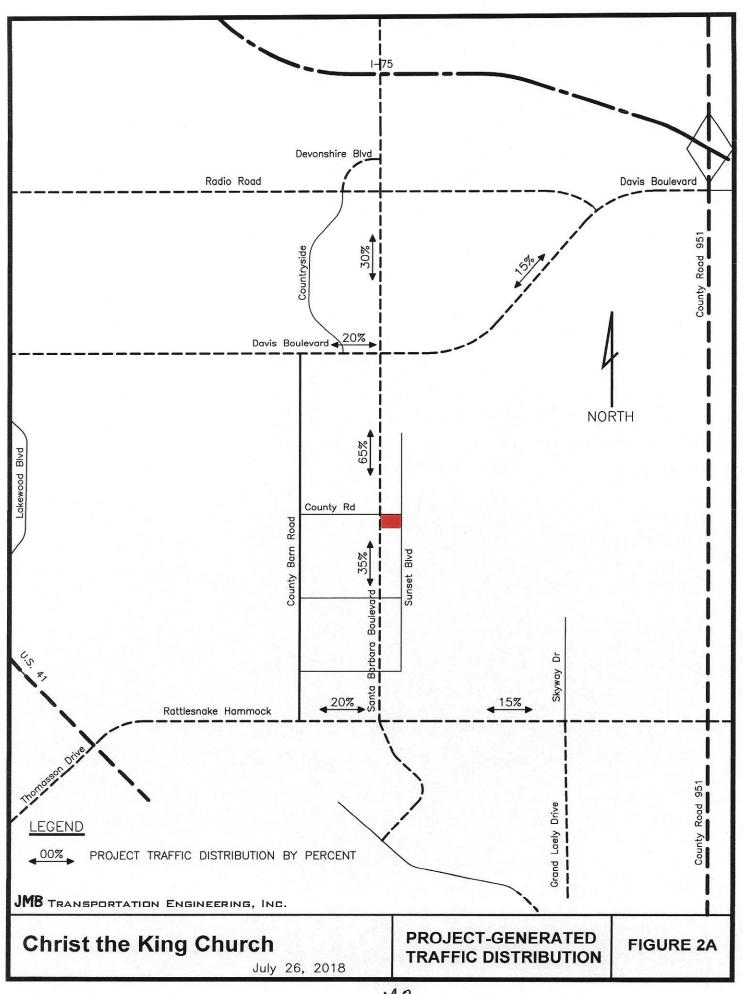


TABLE 2A PROJECT'S AREA OF IMPACT

Project TrafficPeak Direction (vphpd) = Project TrafficNon-Peak Direction (vph) =

6 Exiting 5 Entering

				15.0	16.1	16.2	74.0	2	75.0	0	0.0	79.1	79.2	٨
				Davis Boulevard			Rafflesnake Ham			Lister Days of the Control	Salila Dalibara DIVO			
				County Barn to Santa Barbara	Santa Barbara to Radio Rd	Radio Rd to C.R 951	County Born to Sonto Borhora	County Dail to Califa Daibala	Santa Barbara to C.R. 951		Radio Rd to Davis Bivd	Davis Blvd to Site	Site to Rattlesnake Hammock	
		Road	Class	40	G9	09	AD.	ב	Q9	כש	00	Q9	GD	
	PK Dir.	Serv. Vol.	<u>FOS</u>	۵		۵	_	2	۵	Ш	L	Ш	ш	
LOS Service	PK Direction	Volume	(pdyda)	2200	2900	2900	1900	000	2900	000	2100	3100	3100	
	Project	Traffic	% Dist.	. 20.0%	15.0%	15.0%	20.0%	40.07	15.0%	/00 00	20.0%	%0.59	35.0%	
Project	Pk H	PK Dir	(pdyda)	_	-	~	τ-	-		c	7	4	2	
	Project	Pk H	Pk Dir	8	Ш	ш	*	>	Ш	2	Z	z	S	
Project	Pk H	Non-PK Dir	(vph)	~	_	~	τ.	4	_	c	7	က	2	
	Project	Non-Pk	DiR	ш	×	>	Ц	Ц	>	(n	S	z	
		Impact	Standard	2%	2%	3%	700	0 7	2%	ò	0%7	2%	2%	
		Percent	Impact	0.05%	0.03%	0.03%	%900	2000	0.03%	7000	0.00%	0.13%	0.07%	
		Significant	Impact	ON N	ON N	ON	S	2	ON N	2	2	ON N	9	

TABLE 2B 2017 & 2020 ROADWAY LINK VOLUMES

Per vested Irips Metho	2020	Peak Hour	PK Direction	Background	Per Vested Trips	(pdyda)	1584	863	740	661	1563	1002	1002	
								163			213	112	112	
	Per Growth Rate Method	2020	Peak Hour	PK Direction	Background	(pdyda)	1528	743	743	520	1518	1001	1001	
			Growth	Rate	per	AUIR	2.00%	2.00%	2.00%	2.00%	3.98%	4.00%	4.00%	
				AUIR	¥	DIR	Ш	ш	>	>	z	S	S	
			2017	AUIR	Traffic	(pdyda)	1440	200	700	490	1350	890	068	
							County Barn to Santa Barbara	Santa Barbara to Radio Rd	County Barn to Santa Barbara	Santa Barbara to C.R. 951	Radio Rd to Davis Blvd	Davis Blvd to Site	Site to Rattlesnake Hammock	
							15.0 Davis Boulevard		74.0 Rattlesnake Ham.		78.0 Santa Barbara Blvd			
							15.0	16.1	74.0	75.0	78.0	79.1	79.2	

TABLE 2C 2020 ROADWAY LINK VOLUME/CAPACITY ANALYSIS

					2020		2020					2020		2020	2020
			2017		Peak Hour		Peak Hour	Project		Project		Build-Out	Serv. Vol.	Build-Out	Build-Out
			Peak Hour		PK Direction	Bkgd	PK Direction	Pk Hr	Prjct	Pk Hr	Prjct	Peak Hour	Pk Hr	Peak Hour	Peak Hour
			PK Direction		Background	¥	Background	PK Dir	Ρk	Ion-PK Dir	Non-Pk	PK Dir	PK Dir	PK Direction	PK Direction
			(pdyda)	FOS	(pdyda)	ä	FOS	(pdydy)	히	(vph)	Dir	(pdyda)	(pdyda)	v/c Ratio	TOS
15.0	Davis Boulevard	County Barn to Santa Barbara	1440	O	1584	Ш	O	_	≥	-	Ш	1585	2200	0.72	O
16.1		Santa Barbara to Radio Rd	700	œ	863	Ш	ш	_	Ш	~	8	864	2900	0.30	ω
74.0	Rattlesnake Ham.	County Barn to Santa Barbara	200	Ω	743	>	ω	_	≥	~	Ш	744	1900	0.39	ω
75.0		Santa Barbara to C.R. 951	490	œ	199	>	œ	~	Ш	_	×	662	2900	0.23	m
78.0		Santa Barbara Blvd Radio Rd to Davis Blvd	1350	Ф	1563	z	ω	2	z	2	S	1565	3100	0.50	Ω
79.1		Davis Blvd to Site	890	8	1002	S	ω	4	z	က	S	1005	3100	0.32	ш
79.2		Site to Rattlesnake Hammock	890	8	1002	S	ω	2	S	2	z	1004	3100	0.32	ш