

COLLIER COUNTY GOVERNMENT
GROWTH MANAGEMENT DEPARTMENT
www.colliergov.net

2800 NORTH HORSESHOE DRIVE NAPLES, FLORIDA 34104 (239) 252-2400 FAX: (239) 252-6358

STATEMENT OF UTILITY PROVISIONS FOR *PUD REZONE* REQUEST

APPLICANT CONTACT INFORMATION				
Name of Applicant(s): BCHD Partners II, LLC				
Name of Applicant(s):				
	City: Naples State: FL ZIP: 34105			
Telephone: <u>239-262-2600</u> Cel	l: Fax:			
E-Mail Address: DGenson@barronc				
Address of Subject Property (If available	e): 8810 and 9020 Immokalee Rd.			
City: Naples State: FL				
City: Ttapios State: 1 2	ZIP:			
PRO	OPERTY INFORMATION			
Section/Township/Range: 26 /48	,26			
section/Township/Range://	/ 			
Lot: Block: Subdivision:				
Metes & Bounds Description: See Ex				
Plat Book: Page #: Propert	y I.D. Number: 00192360001 and 00192920001			
TYPE OF SEW	AGE DISPOSAL TO BE PROVIDED			
Check applicable system:				
a. County Utility System				
b. City Utility System				
c. Franchised Utility System	Provide Name:			
d. Package Treatment Plant	(GPD Capacity):			
e. Septic System				
TYPE OF WA	ATER SERVICE TO BE PROVIDED			
Check applicable system:				
a. County Utility System				
b. City Utility System				
c. Franchised Utility System	Provide Name:			
d. Private System (Well)				
Total Population to be Served: See at	tached scenarios (Scenario 3 controls)			
Peak and Average Daily Demands:				
A. Water-Peak: ^{220 gpm}	Average Daily: 236,616 GPD			
B. Sewer-Peak: 158 gpm	Average Daily: 169,011 GPD			
If proposing to be connected to Collie	County Regional Water System, please provide the date			
service is expected to be required: 2020				

2/21/2017 Page 8 of 16

COLLIER COUNTY GOVERNMENT GROWTH MANAGEMENT DEPARTMENT www.colliergov.net

2800 NORTH HORSESHOE DRIVE NAPLES, FLORIDA 34104 (239) 252-2400 FAX: (239) 252-6358

Narrative statement: Provide a brief and concise narrative statement and schematic drawing of sewage treatment process to be used as well as a specific statement regarding the method of affluent and sludge disposal. If percolation ponds are to be used, then percolation data and soil involved shall be provided from tests prepared and certified by a professional engineer.

Please reference attached sheets for calculation of average daily flow and peak day flow. Flows have been calculated for

the three scenarios utilized in the traffic analysis.

Collier County Utility Dedication Statement: If the project is located within the service boundaries of Collier County's utility service system, a notarized statement shall be provided agreeing to dedicate the water distribution and sewage collection facilities within the project area to the Collier County Utilities. This shall occur upon completion of the construction of these facilities in accordance with all applicable County ordinances in effect at that time. This statement shall also include an agreement that the applicable system development charges and connection fees will be paid to the County Utilities Division prior to the issuance of building permits by the County. If applicable, the statement shall contain an agreement to dedicate the appropriate utility easements for serving the water and sewer systems.

Attached.

Statement of Availability Capacity from other Providers: Unless waived or otherwise provided for at the pre-application meeting, if the project is to receive sewer or potable water services from any provider other than the County, a statement from that provider indicating adequate capacity to serve the project shall be provided.

2/21/2017 Page 9 of 16

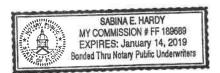
Pelican Nursery MPUD

Collier County Utility Dedication Statement

August 14, 2017

The developer agrees to dedicate the water distribution and sewage collection facilities within the project area to the Collier County Utilities. This shall occur upon completion of the construction of these facilities in accordance with all applicable County ordinances in effect at that time. The developer also agrees that the applicable system development charges and connection fees will be paid to the County Utilities Division prior to the issuance of building permits by the County. The developer agrees to dedicate the appropriate utility easements for serving the water and sewer systems.

Signature


<u>Brian Goguen, as Vice President of Barron Collier Corporation, as General Partner of BCAM, LLLP, as Manager of BCHD Partners II, LLC (Applicant)</u>

STATE OF FLORIDA)
COUNTY OF COLLIER)

Sworn to (or affirmed) and subscribed before me this 14th day of August, 2017

by <u>Brian Goguen</u> who is <u>personally known to me</u> or has produced _____

as identification.

Notary Public

(Name typed, printed or stamped)

	Potable Water		Sanitary Sewer	
	ADF Peak Day		ADF*	Peak Day
	(GPD)	(gpm)	(GPD)	(gpm)
Scenario 1	128,070	120	91,478	86
Scenario 2	182,670	171	130,478	122
Scenario 3	236,616	220	169,011	158

Scenario 1

- 112 Dwelling Units
- 30 ksf Office
- 147 ksf Shopping Center
 - 6 ksf gas station convenience store
- 135 ksf home improvement store
 - 7 ksf fast food restaurant

Calculate Peak Water Demand from Residential Uses

Residential Average Daily Flow =	112 Units	350 GPD
		Unit

Residential Average Daily Flow = 39,200 GPD

Residential Peak Day Demand = _	39,200 Gal	1 Day	1.35 Peak Day Factor
·	Day	1440 Minutes	

Residential Peak Day Demand = 36.8 gpm

Calculate Peak Water Demand from Non-Residential Uses

Office Flows

Office Average Daily Flow =	30,000 sf	15 GPD Wastewater	1.4 GPD Water
_		100 sf	GPD WW
Office Average Daily Flow =	6,300 GPD		
Office Peak Day Demand =	6,300 Gal	1 Day	1.35 Peak Day Factor
_	Day	1440 Minutes	

Office Peak Day Demand = 5.9 gpm

Shopping Center Flows

Calculate assumed retail floor area and number of restaurant seats:

Assume 15% of shopping center as restaurant use:

Total Commercial Floor Area = 147,000 sf
Assumed Restaurant Area = 15%

Assumed Restaurant Floor Area = 22,050 sf

Assume Restaurant Density = 45 sf / restaurant seat

Assumed Number of Restaurant Seats = 22,050 sf restaurant area
45 sf / restaurant seat

Assumed Number of Restaurant Seats = 490 restaurant seats

Calculate potable water demands from restaurant use:

Restaurant Average Daily Flow = 490 seats 40 GPD Wastewater 1.4 GPD Water seat GPD WW

Restaurant Average Daily Flow = 27,440 GPD

Restaurant Peak Day Demand = 27,440 Gal 1 Day 1.35 Peak Day Factor
Day 1440 Minutes

Restaurant Peak Day Demand = 25.7 gpm

Calculate potable water demands from retail use:

Retail Average Daily Flow = 124,950 sf 0.1 GPD Wastewater 1.4 GPD Water sf GPD WW

Retail Average Daily Flow = 17,493 GPD

Retail Peak Day Demand =	17,493 Gal	1 Day	1.35 Peak Day Factor
	Day	1440 Minutes	

Retail Peak Day Demand = 16.4 gpm

Calculate average day potable water demands from shopping center use:

Restaurant Average Daily Flow = 27,440 GPD

Retail Average Daily Flow = 17,493 GPD

Shopping Center Average Daily Flow = 44,933 GPD

Calculate peak day potable water demands from shopping center use:

Restaurant Peak Day Demand = 25.7 gpm
Retail Peak Day Demand = 16.4 gpm

Shopping Center Average Daily Flow = 42.1 gpm

Gas Station Flows

Water closet demand for service station open greater than 16 hours per day

Gas Station WC Average Daily Flow =	3 water closets	325 GPD	1.4 GPD Water
		Water Closet	GPD WW
Gas Station WC Average Daily Flow =	1,365 GPD		
Gas Station WC Peak Day Demand =	1,365 Gal	1 Day	1.35 Peak Day Factor
_	Day	1440 Minutes	
Gas Station WC Peak Day Demand =	1.3 GPD		

For carry out food service operations within gas station

Gas Station Store Average Daily Flow =	6,000 sf building area	50 GPD	1.4 GPD Water
		100 sf	GPD WW

Gas Station Store Average Daily Flow = 4,200 GPD

Gas Station Store Peak Day Demand =	4,200 Gal	1 Day	1.35 Peak Day Factor
	Day	1440 Minutes	

Gas Station Store Peak Day Demand = 3.9 GPD

Per food service employee within gas station

Per employee Average Daily Flow =	5 employees	15 GPD	1.4 GPD Water
		employee	GPD WW
Per Employee Average Daily Flow =	105 GPD		
			_
Per Employee Peak Day Demand =	105 Gal	1 Day	1.35 Peak Day Factor
	Day	1440 Minutes	

Per Employee Peak Day Demand = 0.1 gpm

Calculate average day potable water demands from gas station use:

Water Closet Average Daily Flow = 1,365 GPD
Convenience Store Average Daily Flow = 4,200 GPD
Per Employee Average Daily Flow = 105 GPD

Gas Station Average Daily Flow = 5,670 GPD

Calculate peak day potable water demands from gas station use:

Water Closet Peak Day Demand = 1.3 gpm
Convenience Store Peak Day Demand = 3.9 gpm
Per Employee Peak Day Demand = 0.1 gpm

Gas Station Peak Day Demand = 5.2 gpm

Home Improvement Store Flows

Retail Average Daily Flow = 135,000 sf 0.1 GPD Wastewater 1.4 GPD Water sf GPD WW

Retail Average Daily Flow = 18,900 GPD

Retail Peak Day Demand = 18,900 Gal 1 Day 1.35 Peak Day Factor

Day 1440 Minutes

Retail Peak Day Demand = 17.7 gpm

Fast Food Restaurant Flows

Assumed Number of Restaurant Seats = 7,000 sf restaurant area 30 sf / restaurant seat

Assumed Number of Restaurant Seats = 233 restaurant seats

Calculate potable water demands from restaurant use:

Restaurant Average Daily Flow =	233 seats	40 GPD Wastewater	1.4 GPD Water
·		seat	GPD WW

Restaurant Average Daily Flow = 13,067 GPD

Restaurant Peak Day Demand = 13,067 Gal 1 Day 1.35 Peak Day Factor
Day 1440 Minutes

Restaurant Peak Day Demand = 12.3 gpm

Scenario 1 Summary

Proposed Land Use	Potable Water		Sanitary Sewer	
	ADF	Peak Day	ADF*	Peak Day
	(GPD)	(gpm)	(GPD)	(gpm)
Residential	39,200	36.8	28,000	26.3
Office	6,300	5.9	4,500	4.2
Shopping Center	44,933	42.1	32,095	30.1
Gas Station w/ Convenience Store	5,670	5.2	4,050	3.8
Home Improvement Store	18,900	17.7	13,500	12.7
Fast Food Restaurant	13,067	12.3	9,333	8.8
Total for Scenario	128,070	120.0	91,478	85.8

^{*} Sanitary sewer ADF calculated as Water ADF divided by 1.4

Scenario 2

300 Dwelling Units

140 Room Hotel

147 ksf Shopping Center

6 ksf gas station convenience store

7 ksf fast food restaurant

Calculate Peak Water Demand from Residential Uses

Residential Average Daily Flow =	300 Units	350 GPD	
		Unit	
Residential Average Daily Flow =	105,000 GPD		
Residential Peak Day Demand =	105,000 Gal	1 Day	1.35 Peak Day Factor
	Day	1440 Minutes	

Residential Peak Day Demand = 98.4 gpm

Calculate Peak Water Demand from Non-Residential Uses

Hotel Use Flows

Hotel Average Daily Flow =	140 Rooms	100 GPD	
		Room	
Hotel Average Daily Flow =	14,000 GPD		
Hotel Peak Day Demand =	14,000 Gal	1 Day	1.35 Peak Day Factor
	Day	1440 Minutes	

Hotel Peak Day Demand = 13.1 gpm

Shopping Center Flows

Calculate assumed retail floor area and number of restaurant seats:

Assume 15% of shopping center as restaurant use:

Assume Restaurant Density = 45 sf / restaurant seat

Assumed Number of Restaurant Seats = 490 restaurant seats

Calculate potable water demands from restaurant use:

Restaurant Average Daily Flow =	490 seats	40 GPD Wastewater	1.4 GPD Water
		seat	GPD WW

Restaurant Average Daily Flow = 27,440 GPD

Restaurant Peak Day Demand = 25.7 gpm

Calculate potable water demands from retail use:

Retail Average Daily Flow = 17,493 GPD

Retail Peak Day Demand = _	17,493 Gal	1 Day	1.35 Peak Day Factor
_	Day	1440 Minutes	

Retail Peak Day Demand = 16.4 gpm

Calculate average day potable water demands from shopping center use:

Shopping Center Average Daily Flow =	44,933 GPD
Retail Average Daily Flow =	17,493 GPD
Restaurant Average Daily Flow =	27,440 GPD

Calculate peak day potable water demands from shopping center use:

Shonning Center Average Daily Flow =	42 1 gnm
Retail Peak Day Demand =	16.4 gpm
Restaurant Peak Day Demand =	25.7 gpm

Gas Station Flows

Water closet demand for service station open greater than 16 hours per day

Gas Station WC Average Daily Flow =	3 water closets	325 GPD	1.4 GPD Water
		Water Closet	GPD WW
Gas Station WC Average Daily Flow =	1,365 GPD		
	_		1
Gas Station WC Peak Day Demand =	1,365 Gal	1 Day	1.35 Peak Day Factor
	Day	1440 Minutes	
Gas Station WC Peak Day Demand =	1.3 GPD		

For carry out food service operations within gas station

Gas Station Store Average Daily Flow =	6,000 sf building area	50 GPD	1.4 GPD Water
		100 sf	GPD WW

Gas Station Store Average Daily Flow =	4,200	GPD	
Gas Station Store Peak Day Demand =	4,200	Gal	1 Day
		Day	1440 Minutes
Gas Station Store Peak Day Demand =	3.9	GPD	
er food service employee within gas station			
Per employee Average Daily Flow =	5	employees	15 GPD
			employee
Per Employee Average Daily Flow =	105	GPD	
Per Employee Peak Day Demand =	105	Gal	1 Day
		Day	1440 Minutes
Per Employee Peak Day Demand =	0.1	gpm	
alculate average day potable water demands from ga	s station us	se:	
Water Closet Average Daily Flow =	1,365	GPD	
Convenience Store Average Daily Flow =	4,200	GPD	
Per Employee Average Daily Flow =	105	GPD	
Gas Station Average Daily Flow =	5,670	GPD	-
alculate peak day potable water demands from gas st	ation use:		
Water Closet Peak Day Demand =	1.3	gpm	
Convenience Store Peak Day Demand =	3.9	gpm	
	0.1	gpm	
Per Employee Peak Day Demand =			

1.35 Peak Day Factor

1.4 GPD Water

GPD WW

1.35 Peak Day Factor

employee

Assumed Number of Restaurant Seats = 7,000 sf restaurant area 30 sf / restaurant seat

Assumed Number of Restaurant Seats = 233 restaurant seats

Calculate potable water demands from restaurant use:

Restaurant Average Daily Flow =	233 seats	40 GPD Wastewater	1.4 GPD Water
		seat	GPD WW

Restaurant Average Daily Flow = 13,067 GPD

Restaurant Peak Day Demand =	13,067 Gal	1 Day	1.35 Peak Day Factor
	Day	1440 Minutes	

Restaurant Peak Day Demand = 12.3 gpm

Scenario 2 Summary

Proposed Land Use	Potable Water		Sanitary Sewer	
	ADF	Peak Day	ADF*	Peak Day
	(GPD)	(gpm)	(GPD)	(gpm)
Residential	105,000	98.4	75,000	70.3
Hotel	14,000	13.1	10,000	9.4
Shopping Center	44,933	42.1	32,095	30.1
Gas Station w/ Convenience Store	5,670	5.2	4,050	3.8
Fast Food Restaurant	13,067	12.3	9,333	8.8
Total for Scenario	182,670	171.2	130,478	122.3

^{*} Sanitary sewer ADF calculated as Water ADF divided by 1.4

Scenario 3

- **400** Dwelling Units
- 45 ksf Medical Office
- 150 ksf Shopping Center
 - 6 ksf gas station convenience store
- 20 ksf restaurant
- 7 ksf fast food restaurant

Calculate Peak Water Demand from Residential Uses

Residential Average Daily Flow =	400 Units	350 GPD
_		Unit

Residential Average Daily Flow = 140,000 GPD

Residential Peak Day Demand =	140,000 Gal	1 Day	1.35 Peak Day Factor
	Day	1440 Minutes	

Residential Peak Day Demand = 131.3 gpm

Calculate Peak Water Demand from Non-Residential Uses

Medical Office Flows

Estimate number of practicioners and employees

Number of Practicioners = 45,000 sf office area 1 practicioner 3,000 sf

Number of Practicioners = 15

Number of Employees = 15 Practicioners 6 employees 1 practicioner

Number of Employees = 90

Per Practicioner Average Daily Flow = 15 Practicioners 250 GPD Wastewater 1.4 GPD Water 1 Practicioner GPD WW

Per Practicioner Average Daily Flow = 5,250 GPD

Per Employee Average Daily Flow = 90 Employees 15 GPD Wastewater 1.4 GPD Water
1 Employee GPD WW

Per Employee Average Daily Flow = 1,890 GPD

Calculate average day potable water demands from medical office use:

Per Practicioner Average Daily Flow = 5,250 GPD
Per Employee Average Daily Flow = 1,890 GPD

Medical Office Average Daily Flow = 7,140 GPD

Medical Office Peak Day Demand = 5,250 Gal 1 Day 1.35 Peak Day Factor

Day 1440 Minutes

Medical Office Peak Day Demand = 4.9 gpm

Shopping Center Flows

Calculate assumed retail floor area and number of restaurant seats:

Assume 15% of shopping center as restaurant use:

Total Commercial Floor Area = 150,000 sf
Assumed Restaurant Area = 15%

Assumed Restaurant Floor Area = 22,500 sf

Assume Restaurant Density = 45 sf / restaurant seat

Assumed Number of Restaurant Seats = 22,500 sf restaurant area

45 sf / restaurant seat

Assumed Number of Restaurant Seats = 500 restaurant seats

Calculate potable water demands from restaurant use:

Restaurant Average Daily Flow =	500 seats	40 GPD Wastewater	1.4 GPD Water	
		seat	GPD WW	
Restaurant Average Daily Flow =	28,000 GPD			

Restaurant Peak Day Demand = 28,000 Gal 1 Day 1.35 Peak Day Factor
Day 1440 Minutes

Restaurant Peak Day Demand = 26.3 gpm

Calculate potable water demands from retail use:

Retail Average Daily Flow =	127,500 sf	0.1 GPD Wastewater	1.4 GPD Water
		sf	GPD WW

Retail Average Daily Flow = 17,850 GPD

Retail Peak Day Demand = 17,850 Gal 1 Day 1.35 Peak Day Factor

Day 1440 Minutes

Retail Peak Day Demand = 16.7 gpm

Calculate average day potable water demands from shopping center use:

Restaurant Average Daily Flow = 28,000 GPD
Retail Average Daily Flow = 17,850 GPD

Shopping Center Average Daily Flow = 45,850 GPD

Calculate peak day potable water demands from shopping center use:

Changing Contan Assess Baile Flass	42.0
Retail Peak Day Demand =	16.7 gpm
Restaurant Peak Day Demand =	26.3 gpm

Shopping Center Average Daily Flow = 43.0 gpm

Gas Station Flows

Water closet demand for service station open greater than 16 hours per day

	_		_
Gas Station WC Average Daily Flow =	3 water closets	325 GPD	1.4 GPD Water
		Water Closet	GPD WW
Gas Station WC Average Daily Flow =	1,365 GPD		
Gas Station WC Peak Day Demand =	1,365 Gal	1 Day	1.35 Peak Day Factor
	Day	1440 Minutes	
Gas Station WC Peak Day Demand =	1.3 GPD		
Gas Station WC Peak Day Demand = For carry out food service operations within gas state			
,		50 GPD	1.4 GPD Water
For carry out food service operations within gas stat	tion	50 GPD 100 sf	1.4 GPD Water GPD WW
For carry out food service operations within gas stat	tion		
For carry out food service operations within gas stated Gas Station Store Average Daily Flow =	6,000 sf building area		GPD WW
Gas Station Store Average Daily Flow =	6,000 sf building area 4,200 GPD	100 sf	

,

Per food service employee within gas station

Per employee Average Daily Flow =	5 employees	15 GPD	1.4 GPD Water
		employee	GPD WW

Per Employee Average Daily Flow = 105 GPD

Per Employee Peak Day Demand = 105 Gal 1 Day 1.35 Peak Day Factor

Day 1440 Minutes

Per Employee Peak Day Demand = 0.1 gpm

Calculate average day potable water demands from gas station use:

Water Closet Average Daily Flow = 1,365 GPD
Convenience Store Average Daily Flow = 4,200 GPD
Per Employee Average Daily Flow = 105 GPD
Gas Station Average Daily Flow = 5,670 GPD

Calculate peak day potable water demands from gas station use:

Water Closet Peak Day Demand = 1.3 gpm
Convenience Store Peak Day Demand = 3.9 gpm
Per Employee Peak Day Demand = 0.1 gpm

Gas Station Peak Day Demand = 5.2 gpm

Restaurant Flows

Assume Restaurant Density = 45 sf / restaurant seat

Assumed Number of Restaurant Seats = 20,000 sf restaurant area

45 sf / restaurant seat

Assumed Number of Restaurant Seats = 444 restaurant seats

Calculate potable water demands from restaurant use:

Restaurant Average Daily Flow = 444 seats 40 GPD Wastewater 1.4 GPD Water seat GPD WW

Restaurant Average Daily Flow = 24,889 GPD

Restaurant Peak Day Demand =	24,889 Gal	1 Day	1.35 Peak Day Factor
_	Day	1440 Minutes	

Restaurant Peak Day Demand = 23.3 gpm

Fast Food Restaurant Flows

Assumed Number of Restaurant Seats = 7,000 sf restaurant area

30 sf / restaurant seat

Assumed Number of Restaurant Seats = 233 restaurant seats

Calculate potable water demands from restaurant use:

Restaurant Average Daily Flow =	233 seats	40 GPD Wastewater	1.4 GPD Water
		seat	GPD WW

Restaurant Average Daily Flow = 13,067 GPD

Restaurant Peak Day Demand =	13,067 Gal	1 Day	1.35 Peak Day Factor
·	Day	1440 Minutes	

Restaurant Peak Day Demand = 12.3 gpm

Scenario 3 Summary

Proposed Land Use	Potable Water		Sanitary Sewer	
	ADF	Peak Day	ADF*	Peak Day
	(GPD)	(gpm)	(GPD)	(gpm)
Residential	140,000	131.3	100,000	93.8
Medical Office	7,140	4.9	5,100	4.8
Shopping Center	45,850	43.0	32,750	30.7
Gas Station w/ Convenience Store	5,670	5.2	4,050	3.8
Sit Down Restaurant	24,889	23.3	17,778	16.7
Fast Food Restaurant	13,067	12.3	9,333	8.8
Total for Scenario	236,616	220.0	169,011	158.4

^{*} Sanitary sewer ADF calculated as Water ADF divided by 1.4